

MotoHawk Control Solutions

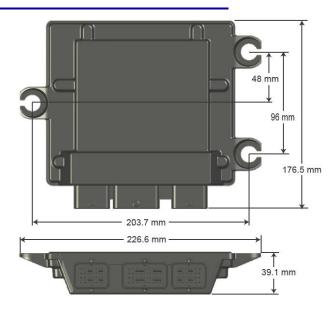
ECM-0554-112-0904-C/F

Engine Control Modules Calibratible / Flash

(0904-C: 1751-6455)

(0904-F: 1751-6454)

Description


Presenting the ECM-5554-112-0904-C/F engine control modules from Woodward's MotoHawk Control Solutions product line. These rugged controllers are capable of operating in harsh automotive, marine, and off-highway applications. The module and its connector system are environmentally sealed and suitable for engine mounting in many applications.

This unit provides 112 connector pins with inputs, outputs, and communications interfaces that support a wide variety of applications.

The ECM-5554-112-0904 is part of the ControlCore[®] family of embedded control systems. The ControlCore operating system, MotoHawk[®] code generation product, and MotoHawk's suite of development tools enable rapid development of complex control systems.

Each controller is available in 'F' (Flash) or 'C' (Calibratible) versions. Flash modules are typically used for production purposes. Calibratible modules are typically for prototyping/development only; they can be calibrated in real time using MotoTune[®].

Physical Dimensions

- 112-pin platform
- Microprocessor: Freescale MPC5554, 80 MHz
- Memory: 2MB Flash, 64K RAM, + 32K Cache, 32K EEPROM
- Calibratible Memory: 512K (256K x2) RAM
- Operating Voltage: 9–16 Vdc, 24 V (jump start), 4.5 V (crank)
- Operating
 Temperature: -40 to
 +105 °C
- Inputs:

VR and Digital Engine Position Sensor (crank and cam) Inputs

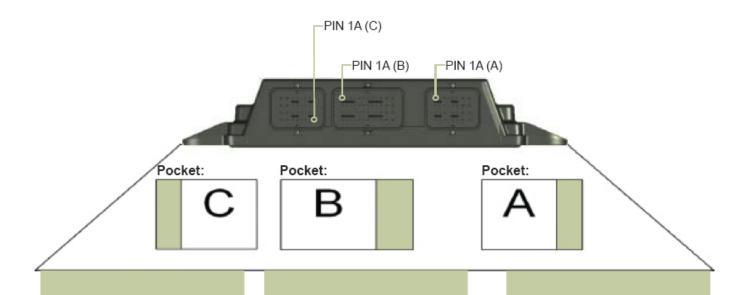
- 33 Analog
- 4 Oxygen Sensor
- 3 Speed (digital)
- 2 Knock Sensor
- 1 Emergency Stop

• Outputs:

- 8 Injector (high impedance)
- 8 Electronic Spark Trigger (5 V)
- 1 Tachometer or Link Interface
- 14 Low Side Driver Outputs
- 1 Digital Output
- 1 Main Power Relay Driver Output
- 2 H-Bridge Outputs

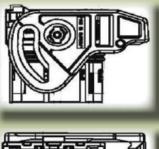
• Communications:

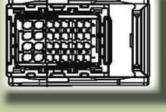
3 CAN 2.0B Channels 1 RS-485 Channel


Simple Block Diagram

Ordering Information

Controller	Part No.	w/Mounting Hardware	Boot Key (P/N)	Boot Cable	Desktop Simulator Harness (P/N)		
ECM555481120904CP0	1751-6455	8923-1629					
ECM555481120904F00	1751-6454	8923-1628	1635-1800	N/A	5404-1205		
CP0 suffix indicates calibratible (development) version of a module.							

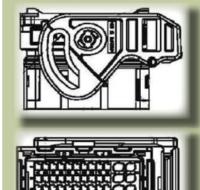

Harness	Part No.
Pigtail	5404-1215
Development Harness	5404-1216

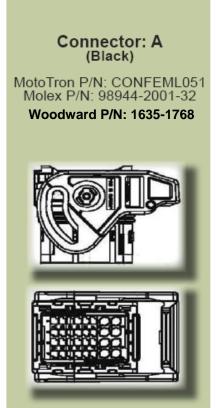


Connector: C (Grey)

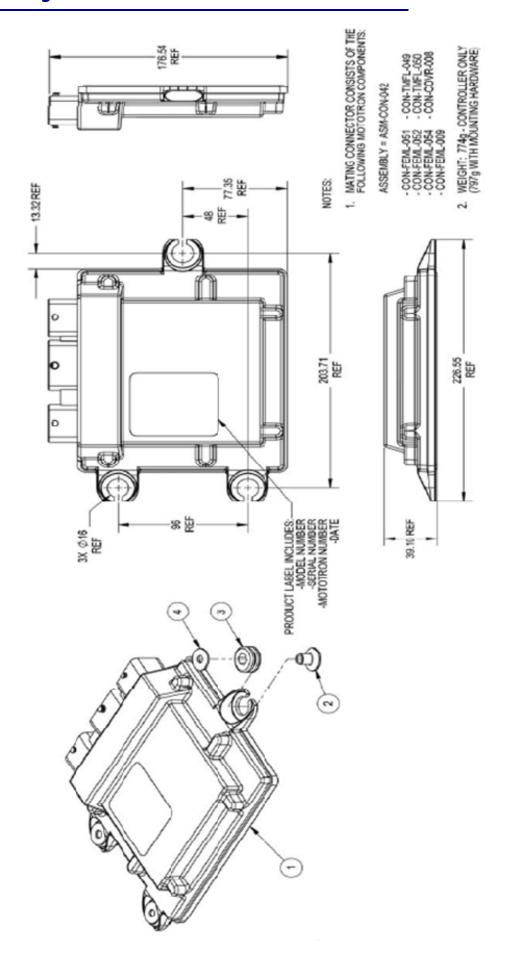
MotoTron P/N: CONFEML054 Molex P/N: 98944-3002-32

Woodward P/N: 1635-1771





Connector: B (Brown)


MotoTron P/N: CONFEML052 Molex P/N: 98950-2003-48

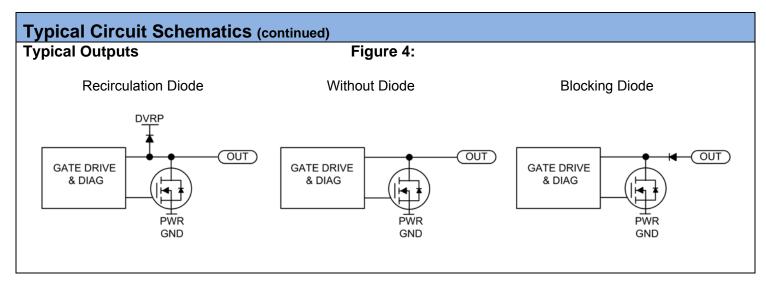
Woodward P/N: 1635-1769

(ECM-5554-112-0904)							
C-F4 B-A3 B-G4 B-H3	BATT 1 BATT 2 ECUP (KEY SWITCH)	XDRP 1 XDRP 2	C-D4 C-E4 A-D3				
B-J2 B-J1 B-H4	STOP CNK+ (VR) CNK- (VR)	MPRD DRVP 1 DRVP 2	C-G3 C-H3				
B-G1 B-E3 B-F1 B-F2 C-C3 C-A1 C-A2 C-F2	CNK (DG) CAM (DG) AN1M (51.1K PD) AN2M (51.1K PD) AN3M (51.1K PD) AN4M (220K PD) AN5M (1K PU) AN6M (1K PU) AN7M (1K PU)	FUEL 1 FUEL 2 FUEL 3 FUEL 4 FUEL 5 FUEL 6 FUEL 7 FUEL 8	A-H1 A-H2 A-G3 A-G4 A-G1 A-G2 A-F3 A-F4				
C-A4 C-B1 C-B2 C-B3 C-B4 C-C1	AN8M (1K PU) AN9M (1K PU) AN10M (1K PU) AN11M (1K PU) AN11M (1K PU) AN13M (1K PU) KNK1+	EST 1 EST 2 EST 3 EST 4 EST 5 EST 6 EST 7	A-A4 A-A3 A-A2 A-A1 A-B4 A-B3 A-B2 A-B1				
B-D2 B-E2 B-E1	KNK1- KNK2+	EST RTN	B-L4 A-C1				
B-K1 B-L1 B-K2 B-L2 B-K3 B-J3 B-K4 B-J4	KNK2- 02A+ 02A- 02B+ 02B- 02C+ 02C- 02D+	TACH FUELPR (CCD) LSO1 LSO2 LSO3 LSO4 LSO5 LSO6 LSO7 LSO7	A-D2 A-F2 A-E1 A-F1 B-M3 B-M4 B-M1 B-M2 A-E2				
B-F3 C-A3 B-A4 C-E2 B-C4 B-D4 B-L3 B-B4 C-E3 C-C4	AN14M (51.1K PD) AN15M (220K PD) AN16M (183 PU) AN17M (220K PD) AN18M (183 PU) AN19M (183 PU) AN20M (150K PU) AN21M (10K PU) AN22M (220K PD)	XDRG 1 XDRG 2 DRVG 1 DRVG 2 DRVG 3	B-D3 A-D4 C-G1 C-G2 A-C4				
B-G2 B-H2 B-H1	AN23M (220K PD) SPEED1 (DG) SPEED2 (DG) SPEED3 (DG)	HBRIDGE1A HBRIDGE1B HBRIDGE2A HBRIDGE2B	C-H4 C-G4 C-H2 C-H1				
C-D1 C-F1 B-F4 B-G3 B-E4 C-C2	AN24M (220K PD) AN25M (220K PD) AN26M (51.1K PD) AN27M (51.1K PD) AN28M (51.1K PD) AN29M (1K PU)	LS09 LS010 LS011 LS012 (CCD) LS013	A-E3 A-E4 A-H4 A-H3 A-D1				
C-F3 C-E1 C-D2 C-D3	AN30M (220K PD) AN31M (1K PU) AN32M (1K PU) AN33M (150K PU)	CAN1+ CAN1- CAN2+ CAN2- CASEGND	B-A1 B-A2 B-C1 B-C2 B-C3				
		CAN3+ CAN3- CAN3 SHIELD	B-B2 B-B1 B-B3				
		(RS-485A) RS485+ (RS-485B) RS485-	A-C3 A-C2				

IMPORTANT The ECM has been validated in an application using typical loads. Maximum loading is based on datasheet values. Actual capability is somewhere between typical (validated) and maximum (datasheet) and is dependent on ambient temperature, system voltage, and the state of all other inputs and outputs. In most cases, it will not be possible for an application to use the maximum values. Please contact Woodward sales for more information. Power and Ground BATT1, BATT2, ECIP (KEY SWITCH), DRVP 1, DRVP 2, DRVG 1, DRVG 2, DRVG 3 (Note: See Figure 1 in "Typical Circuit Schematics" section for Power and Ground Block Diagram) BATT and BATT2 are internally connected (one electrical rade). BATT is normally connected to battery via a fusus. BATT2 provides for a single connector programming harness. it is not normally connected in the application wiring harness. V _{BATT} (min) = 4.5 V (crank transient) and 6.3 V (continuous) V _{BATT} (nom) = 9-16 V V _H (min) = 6.8 V V _H (min) =	Input Signal Conditioning	Notes (see Resource by Connector Pin table and/or block diagram for pull up/pull down resistor levels)					
Section for Power and Ground Block Diagram) BATT1 (C-F4), BATT2 (B-A3) BATT1 (C-F4), BATT2 (B-A3) BATT are internally connected (one electrical node). BATT is normally connected to battery via a fuse. BATT2 provides for a single connector programming harness. ECUP (KEY SWITCH) (B-G4) This input is the user interface to turn the module on and off. DRVP 1 (C-G3), DRVP 2 (C-H3) These pins are normally connected to the output of the main power relay, Driver Power (battery voltage). They provide a current path back to the load (e.g. controlled current) as well as a power source to the internal H-bridges. DRVP 1 (C-G1), DRVG 2 (C-G2), DRVG 3 (A-C4) These pins are the single point ground for the module. STOP (BH3) VII. (max) = 2.7 V VII. (min) = 6.8 V VII. (max) = 2.7 V VII. (min) = 6.8 V VII. (max) = 2.7 V VII. (max) = 0.181 to revolution) T = 1.8 ms Note: The key switch provides the pull-up source for the STOP input. When the key is turned off STOP will be asserted (in hardware). See STOP. DRVP 1 (C-G3), DRVP 2 (C-H3) These pins are normally connected to the output of the main power relay, Driver Power (battery voltage). They provide a current path back to the load (e.g. controlled current) as well as a power source to the internal H-bridges. DRVG 1 (C-G1), DRVG 2 (C-G2), DRVG 3 (A-C4) These pins are the single point ground for the module. STOP (BH3) VII. (max) = 2.2 V VII. (min) = 3.2 V VII. (min) = 3.0 V VIII. (min) = 3.0 V VIII. (min) = 3.0 V VIII. (min) =	based on datasheet values. Actual capability is somewhere between typical (validated) and maximum (datasheet) and is dependent on ambient temperature, system voltage, and the state of all other inputs and outputs. In most cases, it will not be possible for an application to use the maximum values. Please						
DRVP 1, CF4), BATT2 (B-A3) BATT1 and BATT2 are internally connected (one electrical node). BATT is normally connected to battery via a fuse. BATT2 provides for a single connector programming harness; it is not normally connected in the application wiring harness. ECUP (KEY SWITCH) (B-G4) This input is the user interface to turn the module on and off. PRVP 1 (C-G3), DRVP 2 (C-H3) These pins are normally connected to the output of the main power relay, Driver Power (battery voltage). They provide a current path back to the load (e.g. controlled current) as well as a power source to the internal H-bridges. DRVG 1 (C-G1), DRVG 2 (C-G2), DRVG 3 (A-C4) These pins are the single point ground for the module. STOP (BH3) TOP (BH3) CNK+ (VR) (B-J2), CNK- (VR) (B-J1) Valant (min) = 4.5 V (crank transient) and 6.3 V (continuous) Valant (min) = 9-16 V (leant (min)) = 1 mA. (Battery drain when module is off) Valant (min) = 4.5 V (crank transient) and 6.3 V (continuous) Valant (min) = 9-16 V (leant (min)) = 1 mA. (Battery drain when module is off) Valant (min) = 4.5 V (crank transient) and 6.3 V (continuous) Valant (min) = 1 mA. (Battery drain when module is off) Valant (min) = 4.5 V (crank transient) and 6.3 V (continuous) Valant (min) = 1 mA. (Battery drain when module is off) Valant (min) = 1 mA. (Battery drain when module is off) Valant (min) = 4.5 V (crank transient) and 6.3 V (continuous) valant (min) = 1 mA. (Battery drain when module is off) Valant (min) = 4.5 V (crank transient) and 6.3 V (continuous) valant (min) = 1 mA. (Battery drain when module is off) Valant (key off, min) = 1 mA. (Battery drain when module is off) Valant (key off, min) = 1 mA. (Battery drain when module is off) Valant (key off, min) = 1 mA. (Battery drain when module is off) Valant (key off, min) = 1 mA. (Battery drain when module is off) Valant (key off, min) = 1 mA. (Battery drain when module is off) Valant (key off, min) = 1 mA. (Battery drain when module is off) Valant (key off, min) = 1 mA. (Battery drain when module	Power and Ground						
BATT and BATT2 are internally connected (one electrical node). BATT is normally connected to battery via a fuse. BATT2 provides for a single connector programming harness; it is not normally connected in the application wiring harness; it is not normally connected in the application wiring harness. ECUP (KEY SWITCH) (B-G4) This input is the user interface to turn the module on and off. DRVP1 (C-G3), DRVP 2 (C-H3) These pins are normally connected to the output of the main power relay, Driver Power (battery voltage). They provide a current path back to the load (e.g. controlled current) as well as a power source to the internal H-bridges. DRVG 1 (C-G1), DRVG 2 (C-G2), DRVG 3 (A-C4) These pins are the single point ground for the module. STOP (BH3) V _{IL} (max) = 2.2 V V _{IHST} = 0.9 V V _{ADC} = 0.452 (V _{IN}) T = 4.5 ms Note: The key switch provides the pull-up source for the STOP input. When the key is turned off STOP will be asserted (in hardware). See STOP. Note: John The key is turned off STOP will be asserted (in hardware). See STOP. Note: John The key switch provides the pull-up source for the STOP input. When the key is turned off STOP will be asserted (in hardware). See STOP. Note: The key switch provides the pull-up source for the STOP input. When the key is turned off STOP will be asserted (in hardware). See STOP. Note: All DRVG terminals are internally connected (one electrical node). STOP (BH3) V _{IL} (max) = 2.2 V V _{IHST} = 0.9 V V _{ADC} = 0.452 (V _{IN}) T = 4.5 ms Note: The pull-up diode prevents voltage/current from corrupting V _{KEY} . V _{STOP} is a function of V _{KEY} and the resistance of the stop switch. Blocking diode to prevent ECM from sinking current. CNK+ (VR) (B-J2), CNK- (VR) (B-J1) Note: All DRVG terminals are internally connected (one electrical node). Note: The pull-up diode prevents voltage/current from corrupting V _{KEY} . V _{STOP} is a function of V _{KEY} and the resistance of the stop switch. Blocking diode to prevent ECM from sinking current.		section for Power and Ground Block Diagram)					
DRVP 1 (C-G3), DRVP 2 (C-H3) These pins are normally connected to the output of the main power relay, Driver Power (battery voltage). They provide a current) as well as a power source to the internal H-bridges. DRVG 1 (C-G1), DRVG 2 (C-G2), DRVG 3 (A-C4) These pins are the single point ground for the module. STOP (BH3) These pins are the single point ground for the module. STOP (BH3) V _{IL} (max) = 2.7 V V _{IH} (min) = 6.8 V V _{ADC} = 0.181 x V _{KEYSW} (12-bit resolution) T = 1.8 ms Note: The key switch provides the pull-up source for the STOP input. When the key is turned off STOP will be asserted (in hardware). See STOP. V _{IN} = 0 to 27.6 V V _{ADC} = 0.181 V _{GRVP} (12-bit resolution) T = 1.8 ms Note: Unless otherwise specified, all low-side loads assume protection from reverse battery via the main power relay and DRVP. Note: All DRVG terminals are internally connected (one electrical node). STOP (BH3) V _{IL} (max) = 2.2 V V _{IH} (min) = 3.2 V V	BATT1 (C-F4), BATT2 (B-A3)						
This input is the user interface to turn the module on and off. This input is the user interface to turn the module on and off. V _{NCC} = 0.181 x V _{KEYSW} (12-bit resolution) T = 1.8 ms Note: The key switch provides the pull-up source for the STOP input. When the key is turned off STOP will be asserted (in hardware). See STOP. V _{IN} = 0 to 27.6 V V _{ADC} = 0.181 V _{DRVP} (12-bit resolution) T = 1.8 ms Note: The sep ins are normally connected to the output of the main power relay, Driver Power (battery voltage). They provide a current path back to the load (e.g. controlled current) as well as a power source to the internal H-bridges. DRVG 1 (C-G1), DRVG 2 (C-G2), DRVG 3 (A-C4) These pins are the single point ground for the module. STOP (BH3) V _{IL} (max) = 2.2 V V _{IH} (min) = 3.2 V V _{IHYST} = 0.9 V V _{ADC} = 0.452 (V _{IN}) T = 4.5 ms Note: The pull-up diode prevents voltage/current from corrupting V _{KEY} . V _{STOP} is a function of V _{KEY} and the resistance of the stop switch. Blocking diode to prevent ECM from sinking current. CNK+ (VR) (B-J2), CNK- (VR) (B-J1) V _{IN} (max) = 360 V peak-peak V _{IN} (min) = 500 mV peak-peak V _{IN} (min) = 500 mV peak-peak T = 20 µs Note: Assertion of STOP will disable processing of this	node). BATT is normally connected to battery via a fuse. BATT2 provides for a single connector programming harness; it is not normally connected in the application						
off. Note: The key switch provides the pull-up source for the STOP input. When the key is turned off STOP will be asserted (in hardware). See STOP. Note: The key switch provides the pull-up source for the STOP input. When the key is turned off STOP will be asserted (in hardware). See STOP. Note: The key switch provides the pull-up source for the STOP input. When the key is turned off STOP will be asserted (in hardware). See STOP. Note: The key switch provides the pull-up source for the STOP input. When the key is turned off STOP will be asserted (in hardware). See STOP. Note: The sep ins are normally connected to the output of the main power relay, Driver Power (battery voitage). They provide a current path back to the load (e.g. controlled current) as well as a power source to the internal H-bridges. DRVG 1 (C-G1), DRVG 2 (C-G2), DRVG 3 (A-C4)	ECUP (KEY SWITCH) (B-G4)						
DRVP 1 (C-G3), DRVP 2 (C-H3) These pins are normally connected to the output of the main power relay, Driver Power (battery voltage). They provide a current path back to the load (e.g. controlled current) as well as a power source to the internal H-bridges. DRVG 1 (C-G1), DRVG 2 (C-G2), DRVG 3 (A-C4) These pins are the single point ground for the module. STOP (BH3) V _{IL} (max) = 2.2 V V _{HY} (min) = 3.2 V V _{HYST} = 0.9 V V _{HYS} = 0.452 (V _{IN}) T = 4.5 ms Note: The pull-up diode prevents voltage/current from corrupting V _{KEY} . V _{STOP} is a function of V _{KEY} and the resistance of the stop switch. Blocking diode to prevent ECM from sinking current. CNK+ (VR) (B-J2), CNK- (VR) (B-J1) Note: Assertion of STOP will disable processing of this		$V_{ADC} = 0.181 \text{ x } V_{KEYSW} (12\text{-bit resolution})$					
These pins are normally connected to the output of the main power relay, Driver Power (battery voltage). They provide a current path back to the load (e.g. controlled current) as well as a power source to the internal H-bridges. DRVG 1 (C-G1), DRVG 2 (C-G2), DRVG 3 (A-C4) These pins are the single point ground for the module. STOP (BH3) V _{IL} (max) = 2.2 V V _{IH} (min) = 3.2 V V _{ADC} = 0.452 (V _{IN}) T = 4.5 ms Note: The pull-up diode prevents voltage/current from corrupting V _{KEY} . V _{STOP} is a function of V _{KEY} and the resistance of the stop switch. Blocking diode to prevent ECM from sinking current. CNK+ (VR) (B-J2), CNK- (VR) (B-J1) V _{IN} (max) = 360 V peak-peak V _{IN} (min) = 500 mV peak-peak T = 20 µs Note: Assertion of STOP will disable processing of this		STOP input. When the key is turned off STOP will be					
main power relay, Driver Power (battery voltage). They provide a current path back to the load (e.g. controlled current) as well as a power source to the internal H-bridges. DRVG 1 (C-G1), DRVG 2 (C-G2), DRVG 3 (A-C4) These pins are the single point ground for the module. STOP (BH3) V _{IL} (max) = 2.2 V V _{HYST} = 0.9 V V _{ADC} = 0.452 (V _{IN}) T = 4.5 ms Note: The pull-up diode prevents voltage/current from corrupting V _{KEY} . V _{STOP} is a function of V _{KEY} and the resistance of the stop switch. Blocking diode to prevent ECM from sinking current. CNK+ (VR) (B-J2), CNK- (VR) (B-J1) V _{IN} (max) = 360 V peak-peak V _{IN} (min) = 500 mV peak-peak T = 20 µs Note: All DRVG terminals are internally connected (one electrical node).	DRVP 1 (C-G3), DRVP 2 (C-H3)						
provide a current path back to the load (e.g. controlled current) as well as a power source to the internal H-bridges.Note: Unless otherwise specified, all low-side loads assume protection from reverse battery via the main power relay and DRVP.DRVG 1 (C-G1), DRVG 2 (C-G2), DRVG 3 (A-C4) These pins are the single point ground for the module.Note: All DRVG terminals are internally connected (one electrical node).STOP (BH3)V _{IL} (max) = 2.2 V V _{IH} (min) = 3.2 V V _{HYST} = 0.9 V V _{ADC} = 0.452 (V _{IN}) T = 4.5 msNote: The pull-up diode prevents voltage/current from corrupting V _{KEY} . V _{STOP} is a function of V _{KEY} and the resistance of the stop switch. Blocking diode to prevent ECM from sinking current.CNK+ (VR) (B-J2), CNK- (VR) (B-J1)V _{IN} (max) = 360 V peak-peak V _{IN} (min) = 500 mV peak-peak T = 20 μs Note: Assertion of STOP will disable processing of this							
These pins are the single point ground for the module.	provide a current path back to the load (e.g. controlled current) as well as a power source to the internal H-	protection from reverse battery via the main power relay and					
These pins are the single point ground for the module. $ V_{IL} \text{ (max)} = 2.2 \text{ V} $ $V_{IH} \text{ (min)} = 3.2 \text{ V} $ $V_{HYST} = 0.9 \text{ V} $ $V_{ADC} = 0.452 \text{ (V}_{IN}) $ $T = 4.5 \text{ ms} $ $ \text{Note: The pull-up diode prevents voltage/current from corrupting } V_{KEY}. V_{STOP} \text{ is a function of } V_{KEY} \text{ and the resistance of the stop switch. Blocking diode to prevent ECM from sinking current.} $ $ \text{CNK+ (VR) (B-J2), CNK- (VR) (B-J1)} $ $ V_{IN} \text{ (max)} = 360 \text{ V peak-peak } $ $V_{IN} \text{ (min)} = 500 \text{ mV peak-peak } $ $T = 20 \text{ µs} $ $ \text{Note: Assertion of STOP will disable processing of this} $	DRVG 1 (C-G1), DRVG 2 (C-G2), DRVG 3 (A-C4)						
$\begin{array}{c} V_{IH} (min) = 3.2 V \\ V_{HYST} = 0.9 V \\ V_{ADC} = 0.452 (V_{IN}) \\ T = 4.5 ms \\ \\ \hline \textbf{Note:} \text{The pull-up diode prevents voltage/current from corrupting } V_{KEY}, V_{STOP} \text{is a function of } V_{KEY} \text{and the resistance of the stop switch. Blocking diode to prevent ECM from sinking current.} \\ \hline \textbf{CNK+ (VR) (B-J2), CNK- (VR) (B-J1)} \\ \hline V_{IN} (max) = 360 V \text{peak-peak} \\ V_{IN} (min) = 500 \text{mV peak-peak} \\ T = 20 \mu \text{s} \\ \hline \textbf{Note:} \text{Assertion of STOP will disable processing of this} \\ \hline \end{array}$	These pins are the single point ground for the module.	electrical node).					
corrupting V_{KEY} . V_{STOP} is a function of V_{KEY} and the resistance of the stop switch. Blocking diode to prevent ECM from sinking current. CNK+ (VR) (B-J2), CNK- (VR) (B-J1) V_{IN} (max) = 360 V peak-peak V_{IN} (min) = 500 mV peak-peak V_{IN} (min) = 500 m	STOP (BH3)	V_{IH} (min) = 3.2 V V_{HYST} = 0.9 V V_{ADC} = 0.452 (V_{IN})					
V _{IN} (min) = 500 mV peak-peak τ = 20 μs Note: Assertion of STOP will disable processing of this		corrupting V_{KEY} . V_{STOP} is a function of V_{KEY} and the resistance of the stop switch. Blocking diode to prevent ECM					
	CNK+ (VR) (B-J2), CNK- (VR) (B-J1)	V _{IN} (min) = 500 mV peak-peak					

Input Signal Conditioning	(continued)
CNK (DG) (B-H4) This is a digital position input, normally used for crankshaft position. It includes a software selectable pull-up resistor and is suitable for 5-volt or open-drain type sensors.	VIL (max) = 2 V VIH (min) = 3 V VHYST = 500 mV τ = 3.2 μs
	Notes: Hysteresis (and thresholds) are software configurable. Assertion of STOP will disable processing of this signal in hardware. This input may be used as a generic frequency input if the crank encoder is VR. Contact Woodward for more information on this feature.
CAM (DG) (B-G1) This is a digital position input, normally used for the camshaft. It includes a software selectable pull-up resistor and is suitable for 5 V or open-drain type	VIL (max) = 2 V VIH (min) = 3 V VHYST = 500 mV τ = 3.2 μs
sensors.	Note: Hysteresis (and thresholds) are software configurable.
SPEED1 (B-G2), SPEED2 (B-H2), SPEED3 (B-H1) Digital speed input (pulse/ frequency).	VIN = 0-5 V VIL (max) = 2 V VIH (min) = 3 V VHYST = 500 mV τ = 6.2 μ s (except for SPEED1 where τ = 3.2 μ s)
	Note: The actual logic thresholds and hysteresis are software configurable.
O2A+ (B-K1), O2A- (B-L1), O2B+ (B-K2), O2B- (B-L2), O2C+ (B-K3), O2C- (B-J3), O2D+ (B-K4), O2D- (B-J4)	VIN = -1 to +1.1 V from sensor τ = 165 μs
Analog- for switching type heated exhaust gas oxygen sensors (HEGOs).	Notes: The sensor MUST be isolated from ground and sensor's O2– must be connected to O2– input (not ground). Short-to-ground and short-to-battery protected.
KNK1+ (B-D1), KNK1- (B-D2), KNK2+ (B-E2), KNK2- (B-E1)	Broad-band (fl at response) sensors, able to provide independent cylinder knock sensors.
Analog Inputs See Figure 2 in "Typical Circuit Schematics" section.	VIN = 0-5 V VADC = VIN T = 1 ms Resolution= 12-bits
	Note: Short-to-ground and short-to-battery protected.

Output Signal Conditioning	Notes			
See Figure 4 in "Typical Circuit Schematics" section.	Outputs are protected from shorts to battery and ground. Outputs have open circuit and short circuit detection, excluding XDRG and H-Bridges (see H-bridges note for details).			
XDRP1 (C-D4), XDRG1 (B-D3) 5 V supply for analog sensors.	VOUT = 4.9 to 5.1 V IOUT (max) = 100 mA			
	Notes: XDRG is not isolated from PWRGND. Take care not to create ground loops by connecting XDRG to other system grounds. Excessive current on XDRG can create a common-mode voltage error on all sensors connected to XDRG. XDRG is not protected from shorts-to-battery; excessive current may cause permanent damage.			


Output Signal Conditioning	(continued)
XDRP2 (C-E4), XDRG2 (A-D4) 5 V supply for analog sensors.	VOUT = 4.9 to 5.1 V IOUT (max) = 50 mA Notes: XDRG is not isolated from PWRGND. Take care not to create ground loops by connecting XDRG to other system grounds. Excessive current on XDRG can create a commonmode voltage error on all sensors connected to XDRG. XDRG is not protected from shorts-to-battery; excessive current may cause permanent damage.
MPRD (A-D3) Main power relay control output.	ISINK (max) = 700 mA Notes: The high-side of the main power relay is normally connected to battery (fused). Reverse battery-protected.
FUELPR (A-D2)	ISINK (typ) = 165 mA (85 Ω relay) ISINK (max) = 700 mA Note: FUELPR will be disabled (off) ~300 ms after STOP assertion.
FUEL 1 (A-H1), FUEL 2 (A-H2), FUEL 3 (A-G3), FUEL 4 (A-G4), FUEL 5 (A-G1), FUEL 6 (A-G2), FUEL 7 (A-F3), FUEL 8 (A-F4) These outputs control the low-side of high impedance fuel injectors.	ISINK(typ) = 1 A ISINK(max) = 2 A VCLAMP = 55 V
EST 1 (A-A4), EST 2 (A-A3), EST 3 (A-A2), EST 4 (A-A1), EST 5 (A-B4), EST 6 (A-B3), EST 7 (A-B2), EST 8 (A-B1) 5 V digital ignition outputs used to drive logic-level ignition coils.	VOL (max) = 1.3 V at ISINK = 1 mA VOH (min) = 4.1 V at ISOURCE = 500 μA
EST RTN (B-L4)	Low current ground reference for logic-level ignition coils.
TACH (A-C1) Tachometer output with Link Interface capabilities.	ISINK (max) = 100 mA Notes: The circuit is implemented as a low-side driver with 1.8 k Ω resistor pull-up to KEYSW. A blocking diode is also included to prevent back feeding into KEYSW.
LSO1 (A-F2), LSO13 (A-D1)	ISINK (typ) = 0 A to 1 A ISINK (max) = 1 A VCLAMP = 55 V Notes: Implementation uses low-side drive with flyback
LSO2 (A-E1), LSO3 (A-F1), LSO8 (A-E2)	(recirculation) diode. Controlled current. ISINK (typ) = 165 mA ISINK (max) = 700 mA VCLAMP = 55 V
LSO4 (B-M3), LSO5 (B-M4), LSO6 (B-M1), LSO7 (B-M2)	ISINK (typ) = 1 A ISINK (max) = 7 A VCLAMP = 55 V Note: Diagnostic includes current feedback.
LSO9 (A-E3), LSO10 (A-E4)	ISINK (typ) = 165 mA ISINK (max) = 700 mA VCLAMP = 55 V

Output Signal Conditioning	(continued)
LSO11 (A-H4), LSO12 (A-H3)	ISINK (typ) = 165 mA ISINK (max) = 350 mA VCLAMP = 55 V
HBRIDGE1A (C-G4), HBRIDGE1B (C-H4)	IO (max) = 10 A FO (max) = 10 kHz
	Note: Sign-magnitude (PWM) with diagnostic current sense feedback. H-Bridges only shutdown for over temperature. Repeatedly taking the chip to its thermal limit will reduce life.
HBRIDGE2A (C-H2), HBRIDGE2B (C-H1)	IO (max) = 10 A FO (max) = 10 kHz
	Note: Sign-magnitude (PWM) with diagnostic current sense feedback. H-Bridges only shutdown for over temperature. Repeatedly taking the chip to its thermal limit will reduce life.

Communications					
CAN1+ (B-A1), CAN1- (B-A2), CAN2+ (B-C1), CAN2- (B-C2), CAN3+ (B-B2), CAN3- (B-B1)	High-speed CAN 2.0B buses. Note: Regarding termination: CAN1 and CAN2 buses require external termination. CAN3 is internally terminated with a 120 Ω Resistor. Regarding CANSHIELD: CAN3 SHIELD is available for shielded bus connections. The internal connection to PCM ground consists of a 1 Ω				
	resister in series with a 1 micro-farad capacitor.				
RS485+ (A-C3), RS485- (A-C2)	RS-485 serial lines				

Memory	
FLASH	2 MB of FLASH memory, on chip.
RAM	64 K of RAM, on chip.
EEPROM	32 K EEPROM; serial.

Typical Circuit Schematics Power and Ground Figure 1: **ECM** BATT C-F4 B-A3 BATT 2 B-G4 KEYSW KEY SWITCH BLOCK 12 V **BATTERY** A-D3 MPRD C-G3 DRVPWR 1 C-H3 DRVPWR 2 C-D4 MAIN XDRP 1 **POWER** B-D3 XDRG 1 **RELAY** C-E4 XDRP 2 DVRP A-D4 XDRG 2 C-G1 PWRGND 1 C-G2 PWRGND 2 A-C4 PWRGND 3 **Analog Inputs** Figure 2: Resistor Pull-up Resistor Pull-down R_{RC} PIN PIN CRC GNDRF GND_{RF} GND GND **Digital Inputs** Figure 3: Resistor Pull-down Resistor Pull-up <u>5V</u> (SPEED1, CNDDG (SPEED2, SPEED3) PU and CAMDG) **SWITCH** R_{RC} R_{RC} PIN **BUFFER** PIN **BUFFER** C_{RC} C_{RF} C_{RF} C_{RC} GNDRF /// GND_{RF} GND GND

Connector Pinouts

Pin#		Pin#		Pin#		Pin#	
	EST 4		EST 3		EST 2		EST 1
A-A1	Electronic Spark Timing 4	A-A2	Electronic Spark Timing 3	A-A3	Electronic Spark Timing 4	A-A4	Electronic Spark Timing 1
	Drives logic level ignition coils		Drives logic level ignition coils		Drives logic level ignition coils		Drives logic level ignition coils
	EST 8		EST 7		EST 6		EST 5
A-B1	Electronic Spark Timing 8	A-B2	Electronic Spark Timing 7	A-B3	Electronic Spark Timing 6	A-B4	Electronic Spark Timing 5
	Drives logic level ignition coils		Drives logic level ignition coils		Drives logic level ignition coils		Drives logic level ignition coils
	TACH		RS485-		RS485+		DRVG 3
A-C1	5 V Digital Output	A-C2	Serial Communications	A-C3	Serial Communications	A-C4	Driver Ground
	Rpullup= 1.8K to KEY		RS-485B		RS-485A		
	LSO13		FUELPR		MPRD		XDRG 2
A-D1	Low Side Output 13	A-D2	Fuel Pump Relay	A-D3	Main Power Relay Driver	A-D4	Transducer Ground
	Controlled current				Reverse battery diode, 1 A		Analog ground reference
	LSO2		LSO8		LSO9		LSO10
A-E1	Low Side Output 2	A-E2	Low Side Output 8	A-E3	Low Side Output 9	A-E4	Low Side Output 10
A-L1		A-LZ		7, 20	Reverse battery diode	/\ L-1	Reverse battery diode
	LSO3		LSO1		FUEL 7		FUEL 8
A-F1	Low Side Output 3	A-F2	Low Side Output 1	A-F3	Fuel Injector 7	A-F4	Fuel Injector 8
			Controlled current		Low-side driver		Low-side driver

Pin#		Pin#		Pin#		Pin#	
	FUEL 5		FUEL 6		FUEL 3		FUEL 4
A-G1	Fuel Injector 5	A-G2	Fuel Injector 6	A-G3	Fuel Injector 3	A-G4	Fuel Injector 4
	Low-side driver		Low-side driver		Low-side driver		Low-side driver
	FUEL 1	A-H2	FUEL 2		LSO12		LSO11
A-H1	Fuel Injector 81		Fuel Injector 2	А-Н3	Low Side Output 12	A-H4	Low Side Output 11
	Low-side driver		Low-side driver		Discrete		Discrete
	CAN1+	-	CAN1-		BATT 2		AN16M
B-A1	CAN1 Hi signal	B-A2	CAN1 Low signal	B-A3	Battery	B-A4	Analog Input 16
	CAN 2.0B		CAN 2.0B		Internal connect to BATT 1		Rpullup= 183
	CAN3-		CAN3+		CANSHIELD3		AN21M
B-B1	CAN3 Low signal	B-B2	CAN3 Hi signal	B-B3	CAN Shield 3	B-B4	Analog Input 21
	CAN 2.0B						Rpullup= 10K
	CAN2+		CAN2-		CANSHIELD3		AN18M
B-C1	CAN2 Hi signal	B-C2	CAN2 Low signal	B-C3	CAN Shield 3	B-C3	Analog Input 18
	CAN 2.0B		CAN 2.0B				Rpullup= 183
	KNK1+		KNK1-		XDRG 1		AN19M
B-D1	Knock Sensor Hi	B-D2	Knock Sensor Low	B-D3	Transducer Ground	B-D4	Analog Input 19
	Differential broad- band		Differential broad- band		Analog ground reference		Rpullup= 183
	KNK2-		KNK2+		AN1M		AN28M
B-E1	Knock Sensor Low	B-E2	Knock Sensor Hi	B-E3	Analog Input 1	B-E4	Analog Input 28
	Differential broad- band		Differential broad- band		Rpulldown= 51.1K		Rpulldown= 51.1K
	AN2M		AN3M		AN14M		AN26M
B-F1	Analog Input 2	B-F2	Analog Input 3	B-F3	Analog Input 14	B-F4	Analog Input 26
	Rpulldown= 51.1K		Rpulldown= 51.1K		Rpulldown= 51.1K		Rpulldown= 51.1K
	CAM (DG)		SPEED 1 (DG)		AN27M		ECUP
B-G1	Camshaft Sensor	B-G2	Speed Sensor 1	B-G3	Analog Input 27	B-G4	Key Switch Input
	Engine camshaft position		Resolves variable freq.		Rpulldown= 51.1K		Module "wake up" signal
	SPEED 2 (DG)		SPEED 3 (DG)		STOP		CNK (DG)
5 114	Speed Sensor 2	5.110	Speed Sensor 3	5.116	E-Stop Input	5	Crankshaft Sensor
B-H1	Resolves variable freq.	B-H2	Resolves variable freq.	B-H3	Shuts off engine, disables fuel	B-H4	Digital only
	CNK- (VR)		CNK+ (VR)		O2C-		O2D-
B-J1	Crankshaft Sensor Lo	B-J2	Crankshaft Sensor Hi	B-J3	Oxygen Sensor Lo	B-J4	Oxygen Sensor Lo
	VR only		VR only		Switching type		Switching type

Pin#		Pin#		Pin#		Pin#	
B-K1	O2A+	B-K2	O2B+	B-K3	O2C+	B-K4	O2D+
	Oxygen Sensor Hi		Oxygen Sensor Hi		Oxygen Sensor Hi		Oxygen Sensor Hi
	Switching type		Switching type		Switching type		Switching type
B-L1	O2A-	B-L2	O2B-	B-L3	AN20M	B-L4	EST RTN
	Oxygen Sensor Lo		Oxygen Sensor Lo		Analog Input 20		EST Return
	Switching type		Switching type		Rpullup= 150K		Digital Ground Reference
B-M1	LSO6	B-M2	LSO7	В-М3	LSO4	B-M4	LSO5
	Low Side Output 6		Low Side Output 7		Low Side Output 4		Low Side Output 5
C-A1	AN5M	C-A2	AN6M	C-A3	AN15M	C-A4	AN5M
	Analog Input 5		Analog Input 6		Analog Input 15		Analog Input 8
	Rpullup= 1K		Rpullup= 1K		Rpulldown= 220K		Rpullup= 1K
	AN9M		AN10M		AN11M		AN12M
C-B1	Analog Input 9	C-B2	Analog Input 10	C-B3	Analog Input 11	C-B4	Analog Input 12
	Rpullup= 1K		Rpullup= 1K		Rpullup= 1K		Rpullup= 1K
C-C1	AN13M	C-C2	AN29M	C-C3	AN4M	C-C4	AN23M
	Analog Input 13		Analog Input 29		Analog Input 4		Analog Input 23
	Rpullup= 1K		Rpullup= 1K		Rpulldown= 220K		Rpulldown= 220K
C-D1	AN24M	C-D2	AN32M	C-D3	AN33M	C-D4	XDRP 1
	Analog Input 24		Analog Input 32		Analog Input 33		Transducer Power
	Rpulldown= 220K		Rpullup= 1K		Rpullup= 150K		5 V Sensor Power
C-E1	AN31M	C-E2	AN17M	C-E3	AN22M	C-E4	XDRP 2
	Analog Input 31		Analog Input 17		Analog Input 22		Transducer Power
	Rpullup= 1K		Rpulldown= 220K		Rpulldown= 220K		5 V Sensor Power
	AN25M	C-F2	AN7M	C-F3	AN30M	C-F4	BATT 1
C-F1	Analog Input 25		Analog Input 7		Analog Input 30		Battery
	Rpulldown= 220 K		Rpullup= 1K		Rpulldown= 220K		Internal connect BATT 2
C-G1	DRVG 1	C-G2	DRVG 2	C-G3	DRVP 1	C-G4	HBRIDGE1A
	Driver Ground		Driver Ground		Driver Power		H-Bridge Output 1
					Recirculation path		Sign-magnitude (PWM)
C-H1	HBRIDGE2A	C-H2	HBRIDGE2B	С-Н3	DRVP 2	C-H4	HBRIDGE1A
	H-Bridge Output 2		H-Bridge Output 2		Driver Power		H-Bridge Output 1
	Discrete mode		Discrete mode		Recirculation path		Sign-magnitude (PWM)

Environmental Ratings	Notes				
The ECM is designed for automotive, under hood and marine industry environmental requirements. Validation tests include extreme operating temperatures, thermal shock, humidity, salt spray, salt fog, immersion, fluid resistance, mechanical shock, vibration, and EMC. The customer must contact Woodward and provide the intended environmental conditions in the application for verification of performance capability.					
Storage Temperature	-40 °C to +125 °C				
Operating Temperature	-40 °C to +105 °C				
Thermal Shock	−40 °C to +125 °C				
Fluid Resistance	Two-stroke motor oil, four-stroke motor oil, unleaded gasoline, ASTM Reference 'C' fuel				
Humidity Resistance	90 % humidity at 85 °C for 1000 hours				
Salt Fog Resistance	500 hours. 5 % salt fog, 35 °C				
Immersion	4.34 psi test (simulated 3 m / 10 feet), salt water, 20 minutes				
Mechanical Shock	50 G's, 11 ms, half-sine wave				
Drop Test	Drop test on concrete from 1 m				
Vibration This ECM family has been successfully deployed in engine mounted applications ranging from common small displacement engines to large racing engines with extreme vibrations. Electrical and mechanical isolation is achieved via Woodward mounting hardware (consisting of grommet, bushing, and washer) shown to the right. IMPORTANT					

Using a Boot Key/Cable

Errors in configuration, logic and/or other programming made during program development for this module (via .srz file), can cause a persistent loss of CAN communications with the module under development.

If this happens, apply the boot key (or cable, depending on the model) to force the module into reboot mode, reloading the module with functional program code (a known, valid .srz file) in order to allow resumption of module communication. Follow the steps listed in this section. Refer to diagram below for connections.

Refer to "Ordering Information" on p. 2 for related boot key/cable part numbers.

∴WARNING

Remove ECU from control connections before performing

the reboot procedure, as outputs are set to defaults or undefined states, with possibly unpredictable and hazardous results if applied.

NOTICE

Remove other ECUs from CANbus for this procedure.

- I. Connect the module for programming via necessary cables, CAN converter, etc.
- Select a known, valid .srz file for programming.
- With key off, disconnect battery power from module.
 With module power off, initiate programming of the module using MotoTune.
- 4. When the "Looking for an ECU" prompt appears in the dialog, reconnect Battery, and then turn key on, to power up and "wake-up" ECU.

The module must "wake-up"—KEYSW (or ECUP) on—with the boot key or cable connections applied as described in order to initiate a reboot and to absorb the selected program.

IMPORTANT

A boot key provides a 555 Hz, 50 % duty cycle, V=Vbatt, square wave bin, which may be duplicated by

signal to the STOP pin, which may be duplicated by applying this signal from a signal generator to that pin.

NOTES:

- 1) This pinout reflects the Mercury Marine SmartCraft pinout standard for CAN2 and CAN3:
 - CAN2 on pins G/H
 - CAN3 on pins C/D
- 2) Some MotoHawk Control Solutions products, including the dual-channel KVASER cable (Woodward P/N 5404-1324), use an alternate pinout standard:
 - CAN2 on pins C/D
 - CAN3 on pins G/H

PO Box 1519, Fort Collins CO, USA 80522-1519 1000 East Drake Road, Fort Collins CO 80525 Tel.: +1 (970) 482-5811 • Fax: +1 (970) 498-3058 mcsinfo@woodward.com • mcs.woodward.com www.woodward.com

This document is distributed for informational purposes only. It is not to be construed as creating or becoming part of any Woodward contractual or warranty obligation unless expressly stated in a written sales contract.

© Woodward 2011, All Rights Reserved

For more information contact: